Transcription activation by FNR: evidence for a functional activating region 2.

نویسندگان

  • Timo Blake
  • Anne Barnard
  • Stephen J W Busby
  • Jeffrey Green
چکیده

The FNR protein of Escherichia coli controls the transcription of target genes in response to anoxia via the assembly-disassembly of oxygen-labile iron-sulfur clusters. Previous work identified patches of surface-exposed amino acids (designated activating regions 1 and 3 [AR1 and AR3, respectively]) of FNR which allow it to communicate with RNA polymerase (RNAP) and thereby activate transcription. Previously it was thought that FNR lacks a functional activating region 2 (AR2), although selecting for mutations that compensate for defective AR1 or a miscoordinated iron-sulfur cluster can reactivate AR2. Here we show that the substitution of two surface-exposed lysine residues (Lys49 and Lys50) of FNR impaired transcription from class II (FNR box centered at -41.5) but not class I (FNR box centered at -71.5) FNR-dependent promoters. The degree of impairment was greater when a negatively charged residue (Glu) replaced either Lys49 or Lys50 than when uncharged amino acid Ala was substituted. Oriented heterodimers were used to show that only the downstream subunit of the FNR dimer was affected by the Lys-->Ala substitutions at a class II promoter. Site-directed mutagenesis of a negatively charged patch ((162)EEDE(165)) within the N-terminal domain of the RNAP alpha subunit that interacts with the positively charged AR2 of the cyclic AMP receptor protein suggested that Lys49 and Lys50 of FNR interact with this region of the alpha subunit of RNAP. Thus, it was suggested that Lys49 and Lys50 form part of a functional AR2 in FNR.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcription activation by Escherichia coli FNR protein: similarities to, and differences from, the CRP paradigm.

During transcription activation at FNR-dependent promoters where the DNA site for FNR overlaps the -35 element, a surface-exposed activating region in the upstream subunit of the FNR dimer interacts with the C-terminal domain of the RNA polymerase alpha subunit. Starting with a cloned fnr gene encoding a defective FNR derivative carrying substitutions in this activating region, we screened a li...

متن کامل

Spacing requirements for transcription activation by Escherichia coli FNR protein.

We cloned a consensus DNA site for the Escherichia coli FNR protein at different locations upstream of the E. coli melR promoter. FNR can activate transcription initiation at the melR promoter when the FNR binding site is centered around 41, 61, 71, 82, and 92 bp upstream from the transcription start. The SF73 positive control amino acid substitution in FNR interfered with transcription activat...

متن کامل

Additional determinants within Escherichia coli FNR activating region 1 and RNA polymerase alpha subunit required for transcription activation.

The global anaerobic regulator FNR is a DNA binding protein that activates transcription of genes required for anaerobic metabolism in Escherichia coli through interactions with RNA polymerase (RNAP). Alanine-scanning mutagenesis of FNR amino acid residues 181 to 193 of FNR was utilized to determine which amino acid side chains are required for transcription of both class II and class I promote...

متن کامل

Contributions of [4Fe-4S]-FNR and integration host factor to fnr transcriptional regulation.

Maintaining appropriate levels of the global regulator FNR is critical to its function as an O(2) sensor. In this study, we examined the mechanisms that control transcription of fnr to increase our understanding of how FNR protein levels are regulated. Under anaerobic conditions, one mechanism that controls fnr expression is negative autoregulation by the active [4Fe-4S] form of FNR. Through DN...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 184 21  شماره 

صفحات  -

تاریخ انتشار 2002